The dynamics of rigid bodies is a fascinating and complicated subject . 剛體動力學(xué)是一個誘人而復(fù)雜的論題。
Coordinate transformation , matrix , vectors , newton ' s law , conservation theorems , simple harmonic oscillator , non - linear oscillations , gravitation , euler ' s equation when auxiliany condition are imposed , the delta notation , lagrangian and hamilitonian dynamics , central - force motion , dynamics of a system o f particles , motion of noninertial reference frame , dynamics of rigid body , coupled oscillations , orthogonality of the eigenvectors , continuous system 座標(biāo)變換、矩陣、向量、牛頓定律、守恒定律、簡諧振動、非線性振動、引力、尤拉式方程式及附加條件、符號、拉格蘭及漢米爾頓力學(xué)、中心運(yùn)動、多粒子系統(tǒng)動力學(xué)、非慣性參考座標(biāo)運(yùn)動、剛體動力學(xué)、耦會振動、本微向量正交性、連續(xù)系統(tǒng)。
Matrices , vector and vector calculus , newtonian mechanics - single particle , oscillations , nonlinear oscillations and chaos , gravitation , some methods in the calculus of variations , hamilton ' s principles lagrangian and hamiltonian dynamics , central - force motion , dynamics of a system of particles , motion in a noninertia reference frame , dynamics of rigid body 矩陣和向量的計算、單一質(zhì)點(diǎn)的牛頓力學(xué)、線性與非線性的振動運(yùn)動、重力、微積分上的變分法介紹、哈密頓原理、拉氏及哈氏力學(xué)、連心力下的運(yùn)動、質(zhì)點(diǎn)系的運(yùn)動力學(xué)、在非慣性座標(biāo)中的運(yùn)動、剛體的運(yùn)動。